Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomolecules ; 12(6)2022 06 03.
Article in English | MEDLINE | ID: covidwho-1883989

ABSTRACT

For the first time, the influence of COVID-19 on blood microrheology was studied. For this, the method of filtering erythrocytes through filters with pores of 3.5 µm was used. Filterability was shown to significantly decrease with the increasing severity of the patient's condition, as well as with a decrease in the ratio of hemoglobin oxygen saturation to the oxygen fraction in the inhaled air (SpO2/FiO2). The filterability of ≤ 0.65, or its fast decrease during treatment, were indicators of a poor prognosis. Filterability increased significantly with an increase in erythrocyte count, hematocrit and blood concentrations of hemoglobin, albumin, and total protein. The effect of these parameters on the erythrocyte filterability is directly opposite to their effect on blood macrorheology, where they all increase blood viscosity, worsening the erythrocyte deformability. The erythrocyte filterability decreased with increasing oxygen supply rate, especially in patients on mechanical ventilation, apparently not due to the oxygen supplied, but to the deterioration of the patients' condition. Filterability significantly correlates with the C-reactive protein, which indicates that inflammation affects the blood microrheology in the capillaries. Thus, the filterability of erythrocytes is a good tool for studying the severity of the patient's condition and his prognosis in COVID-19.


Subject(s)
COVID-19 , Erythrocyte Deformability , COVID-19/blood , Erythrocytes , Hemoglobins , Humans , Oxygen , Rheology
2.
Thromb Res ; 211: 27-37, 2022 03.
Article in English | MEDLINE | ID: covidwho-1621058

ABSTRACT

INTRODUCTION: Defects of platelet functional responses in COVID-19 were reported, but their origin and pathophysiological significance are unclear. The objective of this study was to characterize the thrombocytopathy in COVID-19. MATERIALS AND METHODS: Analysis of platelet functional responses to activation by flow cytometry and aggregometry in 46 patients with confirmed COVID-19 of different severity (non-ICU, ICU, and ECMO) over the course of hospitalization alongside with plasma coagulation, inflammatory markers (CRP, fibrinogen, NETosis assays in smears) was performed. RESULTS AND CONCLUSIONS: All patients had increased baseline percentage of procoagulant platelets (healthy: 0.9 ± 0.5%; COVID-19: 1.7 ± 0.6%). Patients had decreased agonist-induced platelet GPIb shedding (1.8 ± 0.7 vs 1.25 ± 0.4), P-Selectin exposure (1.51 ± 0.21 vs 1.1 ± 0.3) and aggregation. The values of these parameters among the non-ICU and ICU cohorts differed modestly, while the ECMO cohort differed significantly. Only ECMO patients had pronounced thrombocytopenia. While inflammatory markers improved over time, the observed platelet functional responses changed only moderately. SARS-CoV-2 RNA was found in 8% of blood samples and it did not correlate with platelet counts or responses. All patients had increased NETosis that moderately correlated with platelet dysfunction. High cumulative dosages of LMWH (average > 12,000 IU/day over 5 days) resulted in an improvement in platelet parameters. The observed pattern of platelet refractoriness was reproduced by in vitro pre-treatment of washed platelets with subnanomolar thrombin or perfusion of blood through a collagen-covered flow chamber. We conclude that platelet dysfunction in COVID-19 is consistent with the intravascular-coagulation-induced refractoriness rather than with an inflammation-induced mechanism or a direct activation by the virus.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Thrombocytopenia , Anticoagulants , Blood Platelets , COVID-19/complications , Heparin, Low-Molecular-Weight , Humans , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Thrombocytopenia/drug therapy
3.
Diagnostics (Basel) ; 11(8)2021 Aug 16.
Article in English | MEDLINE | ID: covidwho-1360732

ABSTRACT

COVID-19 patients with acute respiratory distress syndrome (ARDS) have an immune imbalance when systemic inflammation and dysfunction of circulating T and B cells lead to a more severe disease. Using TREC/KREC analysis, we studied the level of mature naive T and B cells in peripheral blood of COVID-19 patients and its relationship with clinical and laboratory data. TREC/KREC analysis was performed by multiplex real-time quantitative PCR on a sample of 36 patients aged 45 years or younger. The reduced TREC/KREC level was observed in ARDS patients compared with non-ARDS patients, and similar results were found for the deceased patients. During days 6 to 20 of hospitalization, a higher neutrophil-to-lymphocyte ratio (NLR) was detected in ARDS patients compared with non-ARDS patients. TREC/KREC negatively correlated with NLR; the highest correlation was recorded for TREC per 100,000 cells with the coefficient of determination R2 = 0.527. Thus, TREC/KREC analysis is a potential prognostic marker for assessing the severity and outcome in COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL